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THEORY OF NONLINEAR HEAT AND MASS TRANSFER ON A 

POROUS SEMIINFINITE PLATE 

K. B. Pavlov, L. D. Pokrovskii, 
and A. P. Shakhorin 

The nonlinear transport process (thermal conductivity or diffusion) is considered 
in a viscous liquid flowing near the plane of a semiinfinite plate. It is shown 
that under certain conditions there is rigorous spatial localization of the thermal 
or diffusive boundary layer. 

Let the stationary flow of a Newtonian viscous liquid move over the plane of a semi- 
infinite plane x~ y, y=O, (Fig. i) in the positive direction of the x axis. We assume that 
the velocity distribution at the external boundary of the laminar boundary layer formed over 
the plate is described by the expression U = cx m, where c and m are constants~0 (one-param- 
eter class of boundary-layer theory [I]). For the sake of generality, it is also assumed 
that on the surface of the plate there is inhomogeneous fluid blowing or suction, proportion- 
al to x(m-1)/2 It is assumed that on the surface of the plate there is heat transfer or 
isothermal diffusion of the plate material in the leading flow, and the corresponding trans- 
port coefficient • depends on the transfer characteristic f(x, y) (temperature or concentra- 
tion) according to the power law 

x = a n  \ ~ /  ; a, n, f ~ - - c o n s t > O .  

Here and below the subscript w denotes the value of the corresponding quantity at the surface 
of the plate. 

In the boundary-layer theory approximation the nonlinear transport process under con- 
sideration is described by the system of equations [2] 

Ou Ou dU a~u Ou Ov 
u - - + v  - U  q-v --; + - - -  = O, (1 )  

Ox ag dx Og 2 ax og 

of of a Ozf 
u - q- v (2) 

Ox Oy f'.$-~ Oy 2 

Here u(x, y) and v(x, y) are the longitudinal and transverse components of the fluid velocity. 

Assuming that there is no transferable characteristic in the leading flow ("vanishing 
background"), the boundary conditions which the solution of system (i), (2) must satisfy are 
written in the form 
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m + 1 (3) u(x, ~ = 0 ,  v(x, 0 ) =  - - ~ v x ~ - ~ ) ~ / 2  ~ ,  u(x, oo)=cx~, 
2 

[(x, O)--[w, f(x, oo)=Vfn(x, oo)=0.  (4) 

Here m~ = const is the blowing parameter; ~w < 0 in the case of blowing, and~w> 0 in the case 
of suction. (The last condition in (4) expresses the absence of a flow of transfer character- 
istics upon being far removed from the wall). 

It follows from physical considerations that everywhere at x, y ~0 the functions f(x, 
y) and vfn(x, y) must be continuous. 

The functions u(x, y) and v(x, y) are determined as a solution of the self-similar 

problem (i), (3) [2]: 
u (x, 0 = cxm~ ' (~), 

v (x, ~ = I (cvx~_i),lz [(m - -  1) n~' 01) - -  (m + 1) ~ (n)]- 
T 

Here and below the prime denotes ordinary differentiation with respect to the self-similar 
variable ~ = y(cxm-~/~) ~f~ 

Tables of values of the functions ~(n), being the solution of the boundary-value problem 
for the ordinary differential equation, are given in [3]. It is important to note that ~ (n) 
is an increasing function of ~, while ~(0) =~w,~'(oo)= i. 

A solution f(x, y) of problem (2), (4) 

f(x. 
Substituting (5) into (2) and (4), we have 

is sought in the form 

v) = w e  (n). (5) 

1 
iO"(n)l"+ ~ o~(n)o ' (n)  = 0 ;  oc0 )=  1. o ( ~ )  = ( o ~ ' ( ~ )  = 0 .  (6) 

Here o = (m + l)~/2a is the Prandtl number (thermal or diffusive depending on the transport 

process under consideration). 

The solution of problem (6) cannot be obtained analytically, and numericalmethods must 
be used to solve it. It is recommended, however, to start with a preliminary qualitative 
study of the properties of the solution of problem (6), which we provide initially for the 
case ~(0)~w >i0, when~(n) > 0 for all 0 < n < ~ [2, 3]. 

We introduce the new unknown function ,(N)-----On(N), which is defined by the following problem: 

1 e~ 01), (7) , "  (~) = - -  ~ ( n )  I*' ~" (~)1', o in) = 

, ( 0 )  = 1, , ( ~ )  = , ' ( ~ )  = 0 .  ( 8 )  

We note that only nonnegative solutions of problem (6), i.e., @(N)~0, ,(N)~0, have a 
physical meaning. It therefore follows from (7) that ~'(~) and *"(n) have different signs 
for 0 < n < =. Taking into account the condition *(=) = 0 and the fact that $'(n) is a con- 
tinuous function, it can be concluded that ~(n) is a convex, monotonic, decreasing function. 

Let q = q, > 0 be some fixed value of n, so that ~(n*) ~ ~, > O. Obviously, the solu- 
tion of problem (7), (8) for n > n, can be considered as a solution of Eq. (7) with condi- 
tions 

*(q, )  = **, ~(oo) = , '  (oo) = 0. (9) 

Consider the auxiliary problem 

~" (~) = - o.  ~ ~ ( n ) l ' . ,  (~.)  = * * , ,  ( ~ )  = , '  (~)  = 0. (10) 

d i f f e r i n g  from (7),  (9) in  tha t  ~(q) in  Eq. (7) i s  rep laced  by the cons tan t  m, ~ ~(n*) = 
const. The auxiliary problem (i0) has an analytic solution, whose form varies with n. For 
n < 1 it is written in the form 

1 - - - n  t l - -  1 

~ ( q ) = , , [  1 + 1--nn ~  ( q - - q * ) ]  ' ' l * < ~ < ~ 1 7 6  
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while for n = I, 

(~) = ~ ,  e - ~ - ~ ~  ~ ,  < ~ < o~. 

For n > i the solution of problem (i0) must not be represented in a single analytic form for 
all values 0 < ~ < ~. For n > i, however, Eq. (i0) has the singular solution ~(q) ~ 0 [4], 
and this makes it possible to construct the generalized solution of problem (i0) in the form 

( 1 
n - -  1 

* O 1 ) =  **  ~zj~i, fo~ ~ , < ~ < ~ ,  
I l l ; F ;  

0 for ~ f < ~ < o o ,  

n--I 

~lf - -  ~t, ' -k 
n - -  1 to, 

(11) 

It is easily verified that the constructed solution satisfies all conditions of problem 
(i0), as well as the physical requirement of continuity of the functions f, Vf n for all ~ k q,. 

We now show that for ~ > ~, the solution of (i0) ~(q) is an upper bound of the solutions 
of problem (7), (9), ~(N), i.e., the following inequality holds 

~(~)~(~), ~<~< ~. (12) 

Putting a(q) ~ #(q)-- ~(~), we have from (7), (9), and (i0) 

(~ , )  = ~ ( ~ )  = ~' (oo) = 0. 

(13) 

(14) 

Transforming ~I n(N)__~I/n(q) by the Lagrange equation, and integrating Eq. (13) once 

with account of the two last conditions (14), we obtain 

~ '  (~1) -t- P 01) ~ (q) = Q Ol), 

I |--r~ 
P (~) -~ - - - ~ ,  l ~ - -  (1 - -  ~) ~ ] T ,  

n 
c o  

Q (n) -~  .f [to (n) - -  %] [r  (n)]' dn. 
~q 

(15) 

The solution (15) satisfying the first condition of (14) is written in the form 

=0xp [_.I ] Y Q   )0xp 

while the function u(q) is bounded, since the functions ~(q) and ~(n) are bounded. Since 
w(q) -- m, > O, and ~'(n) < 0, it follows that Q(~) < 0 and, as a consequence)~(~) < 0. 

Thus, inequality (12) is proved. 

Taking into account the structure of solution (ii) and of inequality (12), it can be 
concluded that for n > 1 the function ~(~) vanishes together with ~'(n) at some value ~ = 
qf < ~f. The solution of problem (7), (9) and, consequently, the solution of problem (7), 
(8) differs from zero at q < nf and vanishes at ~ = ~f, while at n > ~f the singular solution 
of Eq. (7) is continued to be zero. In other words, for n > i there exists a surface y = 
yf(x) ~ nf(~xl-m/c)I/2, ~f = const, separating the regions in which f(x, y) = 0 and f(x, y) # 
0, i.e., there is rigorous spatial localization of the thermal or diffusion boundary layer. 

We also note that for n > 1 one can obtain a description of the behavior of the solution 
of problem (6) near the indicated surface n = Df = const. Replacing in (6) the function 
~(~) by the constant~ (qf), we arrive at the equation 

I @, (16) 
[o ~ (~)F + -~ ~ (qf) (~) = 0, 

whose solution must satisfy the following conditions on the surface ~ = ~f: 
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.q f (x ,g)  = o 
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Fig. i. Stationary boundary 
layer over a semiinfinite plate. 
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Fig. 2. Distribution of transport characteristics 
for various values: a) blowing parameter ~w (o = i; 
n = 2.5; i) ~w = --i; 2) 0; 3) i); b) parameter n 
(~w = 0; o = i; i) n = 2.5; 2) 2; 3) 1.5)." 
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Fig. 3. The local Nusselt 
number as a function of the 
parametern (o = i): I) ~w = 
--1;  2) 0 ;  3) 1 .  
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o ( n f )  = [ o .  (nf)]' = 0 0 7 )  

I n t e g r a t i n g  Eq.  (16)  t w i c e  w i t h  a c c o u n t  o f  c o n d i t i o n  ( 1 7 ) ,  we o b t a i n  t h e  e x p r e s s i o n  

1 

{ ] O(n) = n - -  1 ~ ( n f ) ( n f  - - n )  t , (18)  
2tz 

d e t e r m i n i n g  t h e  t r a n s p o r t  c h a r a c t e r i s t i c  n e a r  t h e  s u r f a c e  n = n f  = c o n s t  f o r  n < n f -  F o r  
n > n f  i t s  d i s t r i b u t i o n  i s  d e t e r m i n e d  by  t h e  s i n g u l a r  s o l u t i o n  o f  ( 1 6 ) @  (n)  = 0 ,  w h i c h  e x i s t s  
if n > 1 [4]. 
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All the arguments above for the case ~w > 0 can also be repeated for the case ~w < 0 
(blowing), since it follows from the properties of the function~(~) that there exists a 

point ~ = ~o < ~, such that ~(~) > 0 for all ~ > ~o. ~ 

Problem (6) was solved numerically by an iteration method [5], where the iteration 
process consisted of the following scheme: 

i+~ - - 0 )  +~ + O i  - 0 .  01-I ~ /+ l - -~ i - I  
n -- , h , 2 h h + 2 -  ~ j  2h 

As to ~(i+~),~+I ~i)~+I, ~(i-I)~i+I , the difference scheme is linear, and therefore the value of O~ I) 

can be found from @~) , well known by the Sweep method. As the initial iteration we chose 

the O~) value for n = 1 [3]. 

The distribution of transferable characteristics O(N) is shown in Fig. 2a, b. The 
curves provided illustrate the described effect of spatial localization of the thermal or dif- 
fusion boundary layer for n > I. 

Figure 2a shows the effect of the blowing (suction) parameter ~w on the distribution of 
transport characteristics. The curves of Fig. 2b illustrate the different behavior of the 
function O(~) near the separating surfaces as a function of n > i. Thus, e.g., Or(nf) = 0 
for n = 1.5, O~(nf) < 0 and is bounded for n = 2, and O~(~f) = -~o for n = 3, which agrees 
with expression (18) for the solution of problem (6). 

In boundary-layer theory the intensity of the heat-or mass-transfer process from the 
surface of the plate to the fluid at a distance x from the front edge of the plate is usually 
characterized by the ratio of the local thermal or diffusion Nusselt number Nu x to the local 
Reynolds number Re x [6]. Figure 3 shows the dependence of the ratio Nu/Re x on the value of 
n in the expressions for the transport coefficient, calculated for different values of the 
injection parametercp w. 

In conclusion, we point out that rigorous spatial localization of a stationary thermal or 
diffusion boundary layer can also be observed in considering nonpolar two-dimensional and 

three-dimensional problems if the corresponding transport coefficients depend on the transport 
characteristics. 
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